Digital ASIC Fabrication

Design Document for Team sdmay26-24

Colin McGann - Project Lead
Samuel Forde - PCB & Layout Lead
Michael Drobot - Firmware Lead
Jack Tonn - Testbench and Validation Lead
Dawud Benedict - Toolflow Lead
Emil Kosic - Repository and Coding Standards Lead
Joshua Arceo - Client/Advisor Communications Lead

Team Email: sdmay26-24@iastate.edu
Team Website: sdmay26-24.sd.ece.iastate.edu

Revised: November 19, 2025— Version 0.1

sdmay26-24.sd.ece.iastate.edu

Fxecutive Summary

Learning Summary

Development Standards & Practices Used
Summary of Requirements

Applicable Courses from Iowa State Univeristy Curriculum

e CPRE 281 - Digital Logic

e CPRE 288 - Embedded Systems I

e EE 330 - Integrated Electronics

e COMS 336 - Introduction to Computer Graphics

e CPRE 381 - Computer Organization and Assembly Level Programming
e EE 465 - Digital VLSI Design

e CPRE 487 - Hardware Design for Machine Learning

e CPRE 488 - Embedded Systems Design

e CPRE 581 - Computer Systems Architecture

New Skills/Knowledge not Taught in Courses

e Tools

— GTKWave
— KLayout

— OpenROAD
— OpenLANE

e Skills
— ASIC Design

e Knowledge Gained

Contents

(L Introductionl 10
(L1 Problem Statement|o 10
L2 Intended Userd 10
[L.2.1 Embedded GPU Users 10
(1.2.2 Chipforge Members| o 10
(1.2.3 ISU Faculty] 11
[2 Requirements, Constraints, and Standards| 12
(2.1 Requirements & Constraints| 12
[2.2 Engineering Standards| oo 13
221 TEEE 1364.1-2002: TEEE Standard for Verilog Register Transfer Level Syn- |
| thesis | L 13
222 TEEE 1364-2001: TEEE Standard Verilog Hardware Description Language| 13
223 TEEE 1149.7-2009: TEEE Standard for Reduced-Pin and Enhanced-Functionality |
| Test Access Port and Boundary-Scan Architecture|. 13
[3 Project Plan| oo 14
13.1 Project Management /Tracking Procedures| 14
[3.2 Task Decomposition| 14
[3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria] 16
13.4 Project Timeline/Schedule| o000 oo 16
13.5 Risks and Risk Management /Mitigation| 18
[3.6 Personnel Effort Requirements| 19
[3.7 Other Resource Requirements| 19
/ Design| 20
4.1 Design Context| 20
4.1.1 Broader Contextl 20
4.1.2 Prior Work/ Solutions|. o 21
4.1.3 Technical Complexity] oo 22

https://standards.ieee.org/ieee/1364.1/2053/
https://standards.ieee.org/ieee/1364/2052/
https://standards.ieee.org/ieee/1149.7/3936/

[4.2 Design Exploration| 22
[4.2.1 Design Decisions| 22
4.2.2 [deation| 23
[4.2.3 Decision-Making and Trade-Off|. 24
(4.3 Proposed Design|o 24
4.3.1 OVEIVIEW! . . . o v v v e e e e e e e s e 24
[4.3.1.1 Input Processing| 26
4.3.1.2 Shader Cores 27
4.3.1.2.1 Vertex Shading|o 28
4.3.1.2.2 Fragment Shading| oo 34
4.3.1.3 Rasterizationl 35
4.3.1.4 Buses, Memory, and Controls| 37
4.3.1.5 VGA Output|. 37
M3.1.6 Hardwarel.o 37
{4.3.2 Functionality|. 39
4.3.3 Areas of Concern and Development| 39
(4.4 Technology Considerations| 40
[4.5 Design Analysis| 40
(5 Testing| L 41
(5.1 Unit Testing] 41
(5.2 Intertace Testing] 41
(5.3 Integration and System Testingl 41
(5.4 Regression Testing|. 42
[5.5 Acceptance Testing] 42
[5.6 User Testing] 44
59 Results 45
5.8 Post-Tapeout Validation| 45
(§ Implementation| 46

[7 Ethics and Professional Responsibilityl 47
7.1 Areas of Professional Responsibility/Code of Ethics| 47
(7.2 Four Principles|. 47
(7.3 Virtues|o 47
8 Closing Materiall 48
8.1 Conclusion| 48
8.2 References 48
8.3 Appendices|. 48
(8.3.1 Further Reading) 48
9 Teaml 50
9.1 [eam Membersl 50
9.2 Required Skill Sets for your Project| 50
9.3 okill Sets Covered by the Team|. 50
9.4 Project Management Style Adopted by the Team|. 50
9.5 Initial Project Management Roles| 50
9.6 [eam Contract]. 50

List of Figures

(1 puGPU Data Flow|00 o0 25
2 Vertex and Index Buffer Fntries for 3D Models/. 26
[3 Vertex Shading Steps| 28
{4 Viewing frustum, showing zNear, zFar, and clipping 31
(5 A bounding box around a triplet of vertices| 35

6 Calculation of the barycentric coordinates for a triangle defined by (zo, yo), |

| (x1,71), (T2,y2) and a point (x,y)..o 36
[7 Calculation of the depth of a pixel within the rasterized triangle|. 36
8 Calculation of the texture address for a pixel within a triangle. (ug_o,v9_2) |
| are the texture coordinates defined at the 3 corners of the current triangle.| . 36
[9 VGA output module block diagram|o 000 38
10 VGA color resistor ladder] oo 38
(1T 3D render of MemoryVGAPmod|. 39
(12 Monitor artifacts during FPGA testing| 42

List of Tables

(1 Project Risks| 18

[2 Personnel Effort Requirements| 19

3 Broader Context] 21

4 Model Transformation Matrices|o 30

(5 Test models and required performance, by complexityl 44

(6 Test model performance results| 45
Definitions

Bringup Testing and developing software for a finished and taped out design.

Caravel The platform provided by ChipFoundry that contains our design. Includes a RISC-
V core, 10 protections, memory for the RISC-V core, a Wishbone 10 bus, UART, and

7

SPI.
Connectivity How the vertices of a model are connected together to form triangles.
Fragment A single pixel outputted by the rasterizer.

Framebuffer Region in memory that holds a frame of video. The frame could be in progress
or complete.

GPU Graphics Processing Unit. Dedicated hardware to accelerate graphics calculations.

GPU Memory The external QSPI memory used for model, texture, and framebuffer stor-
age.

Hardening Compiling a hardware design into fabrication files containing the silicon traces
on the die.

Index Buffer List of indices in the vertex buffer that make a triangle on a model. Stores
the connectivity of a model.

ISA Instruction Set Architecture

Management Core The RISC-V core included in the Caravel harness, used to initialize
and control the shader cores.

PKBus Custom multi-master multi-slave bus used exclusively in the user area. Includes an
arbiter.

PMOD Add-on modules for Digilent FPGAs like the Arty A7 and Zedboard. Connects
over 2x8 0.1" headers with a standard spacing.

Rasterization The process of converting continuous lines into discrete pixels on a screen.

RTL Register Transfer Layer, a common method to simulate hardware modules before syn-
thesis.

Shader A small program that runs on a GPU.
Shader Cores The custom programmable cores used to run shader programs.

Synthesis Compiling the hardware design into logic gates and flip-flops and optimizing out
unused gates. Part of the hardening process.

Tapeout Fabricating the final design.
Texel A texture pixel. One pixel in the texture image.

Texture An image that is applied to a model to color it. Usually there is one texture image
per model.

Texture Coordinates The location in the texture image that corresponds to each vertex
on the model. In other words, the mapping between the model and the texture.

User Area The part of the finished die allocated to our custom design. Has 10mm? of area.
Everything else on the Caravel harness is provided to us and is not modifiable.

Vertex A point in 3D space.

Vertex Buffer List of vertices that make up a model. May also hold other metadata for
each vertex, such as texture coordinates.

Wishbone Bus The data bus included in the Caravel harness. Connects the user area
to the management core and allows the user design to be memory-mapped to the
management core.

1 Introduction

1.1 Problem Statement

Many modern graphics processing units (GPUs) are heavyweight high-power products; They
take up a considerable amount of space in a computational network and have a high cost. For
our project, we have elected to design and test a small footprint educational GPU through the
Iowa State ChipForge organization’s toolflow. This organization’s focus is to give students
an opportunity to experience application-specific integrated circuit (ASIC) design, and the
toolflow is an open-source solution to design ASICs.

Our GPU is an educational GPU in the sense that it is not the fastest or most powerful GPU
solution, but it will be used to help students explore GPU design in a more consumable way
than self-research and exploration. Our documentation and weekly reports can be used
by students to help them understand the architecture choices we made and to help them
consume the design in modularized pieces. Additionally, at Iowa State University, there is a
lack of formal instruction on hardware design for graphics. CPRE 4800 “Graphics Processing
and Architecture” is the only computer architecture course that gives context on GPU design,
but it is seldom offered. Students at other universities may not even have a course on GPU
design offered and could use this document to help themselves learn key concepts for a
relatively simple GPU design.

1.2 Intended Users

Following is a list of potential users for a small-scale GPU.

1.2.1 Embedded GPU Users

As our GPU has less logic and a smaller device count, it will take less power to drive it.
Thus, applications where power has to be limited, such as an embedded system, could benefit
from our design. Embedded GPU Users may not necessarily be searching for the fastest or
highest resolution GPU, but instead something that is low power and easy to integrate into
a system. As our GPU fits on a 10mm?2 die, it has a very small footprint and can fit on most
embedded systems with even a small amount of available space.

1.2.2 Chipforge Members

Members of ChipForge are students who have shown an interest in the ASIC design process.
By being presented with a completed, programmable GPU design, members can dissect the
choices of our group, suggest optimizations, and implement those optimizations themselves.
By being presented with an educational GPU design, members can add their own ideas and

10

inspirations to the design. For example, a student could write a program that creates an
interactive GUI or renders text on the screen, using this GPU as their hardware. Students
could also create their own shaders to modify the image output.

1.2.3 ISU Faculty

ISU Faculty educate a wide range of topics, and having an open-source small GPU invigorates
students to create their own designs. Similar to the 281 CPU used in CPRE 2810 “Digital
Logic” to motivate students to learn digital logic, our GPU can be used to motivate students
in CPRE 4800 “Graphics Processing and Architecture”, CPRE 4880 “Embedded Systems
Design”, or CPRE 381 “Computer Organization and Design” to show design choices and
dataflow outside of the course content.

11

2 Requirements, Constraints, and Standards

2.1 Requirements & Constraints

Functional Requirements

e Must be able to render a 3D model with textures to a screen at a minimum frame rate
of 15Hz

e Must support 320 x 240 resolution

e Must be able to output to a monitor over VGA
Technical Requirements

e Written in Verilog HDL (constraint)

e Maximum core clock frequency of 40 MHz (constraint)

Design should pass LVS & DRC before fabrication (constraint)

Must use the 130nm Skywater process (constraint)

Minimum 8-bit color depth

e Minimum texture size of 16 x 16 pixels

Must be able to render at least 4096 triangles per scene

User Experiential Requirements

e GPU cores must be programmable by the user
e Must be able to take commands from an outside source
e Must have a configurable output resolution

e Must have provided driver code written in C, including a full example of loading and
displaying a 3D model with textures

e Must feature debug registers in critical sections of the graphics pipeline accessible from
the management core

e Must provide a guide for working with the GPU

Physical Requirements

12

Must fit in a 3mm x 3.6mm user project area (constraint)

Must not use more than 38 GPIO pins (constraint)

Must function nominally at room temperature

Must not exceed maximum GPIO frequency of 50MHz (constraint)

2.2 Engineering Standards

Engineering standards ensure that across the industry, engineers agree on processes and
procedures when designing products. This allows other professionals to be able to use their
products better and increases the user experience by making similar products behave simi-
larly. This allows engineers to have consistency in their work from one product to another
and allows companies to build off of these standards instead of having each company recreate
the standards for themselves. The following is a list of some of the IEEE standards that
apply to our project.

2.2.1 IEEE 1364.1-2002: TEEE Standard for Verilog Register Transfer Level
Synthesis

This standard describes how to write Verilog code that will be synthesized in a physical
design. Our project is written in Verilog, and our goal is to receive a die of the design. Thus,
our design must be able to synthesize and harden into a physically manufacturable circuit.

2.2.2 IEEE 1364-2001: IEEE Standard Verilog Hardware Description Lan-
guage

As per the Chipfoundry flow, our design will be written in Verilog HDL. This standard
defines Verilog HDL, including verification, timing, and synthesis. Thus, we must follow the
standard to be able to write Verilog code that will compile, simulate, and eventually reach
synthesis and layout.

2.2.3 IEEE 1149.7-2009: IEEE Standard for Reduced-Pin and Enhanced-Functionality
Test Access Port and Boundary-Scan Architecture

This standard describes test logic for integrated circuits for multiple forms of testing, and it
provides a common way to test interconnections between integrated circuits that have been
placed on a printed circuit board. This is related to our project because we will have an
integrated circuit that will need to be tested and will need to be able to work with other 1Cs
on a PCB, such as memory modules and processing devices.

13

https://standards.ieee.org/ieee/1364.1/2053/
https://standards.ieee.org/ieee/1364/2052/
https://standards.ieee.org/ieee/1149.7/3936/

3 Project Plan

3.1 Project Management /Tracking Procedures

For our project, we have elected to use the waterfall project management style. This is
because we have certain tapeout deadlines that must be met, such as the November and
April tapeouts. Due to the nature of the chipfoundry delivery dates, we will not know if
our modules are silicon-proven until after the next tapeout. Thus, we feel that the common
goals of agile are not as relevant to our project, and we need to have our design mostly to
fully realized before we start creating the submodules.

We track our progress by keeping a list of tasks to do and tasks completed. This list is stored
in a OneNote and is updated during our weekly meetings. Additionally, our project is stored
in a Git repository through GitLab, so we create branches for individual modules and use
merge requests to ensure quality HDL and code is submitted.

3.2 Task Decomposition

1. Install toolchain and do ChipForge tutorials

(a) Complete the blinky, UART, and Wishbone Adder tutorials
(b) Edit the Wishbone Adder to get used to the submodule organization

(c) Create a custom user project to understand module design from scratch
2. Define project specifications

(a) Decide what digital ASIC we will implement
(b) Decide and setup a specific verification method
(c) Declare what the inputs and outputs of the software are

(d) Declare what the inputs and outputs of the hardware are
3. Define project design
(a
(b
(c

(d) Decide on what peripheral modules may be needed

Create block diagram to describe flow of data
Define what operations happen in software and what happens in hardware

Write ISA to run on the specified cores

)
)
)
)

4. Develop hardware to run uGPU*

(a) Create PMOD PCB design for external memory
(b) Test design with FPGA SPI controller and VGA controller

14

10.

11.

Develop software to run yGPU*

(a) Learn how to parse through Wavefront object file (.obj)
(b) Define where data will be stored in memory

(c) Store textures, indices, and vertices in memory

. Write and test Verilog modules!

a) Assign each module to a member, and the tests for that module to another member

b) Write the Verilog module & SVUnit tests in parallel

(a)

(b)

(c¢) Ensure module passes quality tests

(d) Assign a 3rd and 4th person to review the module before it is merged

Connect and test Verilog modules in the top level design®

(a) Once a submodule is verified, implement within a larger module
(b) Verify the larger module with SVUnit

(c) Ensure top level design and software work as expected
Test synthesis options

(a) Ensure designs pass timing
(b) Calculate maximum possible clock speed of GPU
(c) Decide what PnR (Place and Route) technique should be used

Complete pre-check and layout

(a) Ensure the entire GPU design fits within die area
(b) Ensure design passes DRC (Design Rule Check) and LVS (Layout Versus Schematic)

Submit for tapeout

(a) Ensure design is valid and passes Skywater DRC
(b) Submit to chipfoundry

Write user guide

(a) Write procedures for validation and bring-up once the ASIC is shipped
(b) Write a guide on how to use the uGPU

. Tasks done in parallel

15

3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria

e Block Diagram

— Complete GPU block diagram with all required modules
— Get Client and Advisor approval of design

November Tapeout

— Finish verification of rasterizer and bus components

— Add all verified designs in layout and pass DRC/LVS

Faculty Presentation

— Finalize GPU design for presentation

Finish Design and Verification. Begin Final Precheck

— Get entire GPU optimized to fit within die area

April Tapeout

— Complete precheck, layout, and pass DRC/LVS

Industry Review Panel

— Finalize Validation plan

— Complete software implementation for a visual presentation

3.4 Project Timeline/Schedule

The following is a Gantt chart of the tasks listed above, with the bolded categories being
waterfall groups, and diamonds being key milestones

16

Requirements & Design pa—y

Install toolchain and do ChipForge tutorials
Define project specifications
Define project design

Block Diagram
Implementation

Develop hardware to run uGPU
Develop software to run uGPU
Write and test Verilog modules
November Tapeout

Faculty Presentation

Connect and test top level design
Verification

Test synthesis options

Complete pre-check and layout
Finish design € begin precheck
April Tapeout

Maintenance

Write user guide

Project Gantt Chart

Septl Oct | Nov | Dec | Jan | Feb | Mar | Apr IMay

]
]

17

3.5 Risks and Risk Management/Mitigation

Most of our major risk comes from our fabrication requirements. This includes fitting the de-
sign within the die area, meeting our functional requirements with the permitted frequency,
and submitting by the tapeout deadline. Another major risk is possible errors during fabri-
cation. There is a non-zero chance that the chip that is returned has issues that cannot be
found unless exhaustive validation is done. In this case, this risk is completely out of our
control, but having a validation plan can prevent further issues.

In addition to fabrication, the risks fall mainly on design and implementation. Most of
these risks are simply the case that the module is not completed or a failed verification.
These risks would have great consequences on the project, since every component needs to
be present for the GPU to work as expected. Although the big impact has been observed,
the probability that a design is not finished is much lower than other risks due to DRC, LVS,
or area constraints.

Although our end goal is fabrication of the uGPU, the impact of fabrication risks do not make
this project meaningless. The design itself will still benefit Chipforge members, allowing
them to learn and build off GPU architecture. In this case, most risks are that a functional
component does not work as intended. We plan on reducing these risks significantly by
making sure each module is verified by a different member through SV Unit.

Risk Probability | Project Impact
Chipfoundry closes or doesn’t allow tapeout 5% High
Chipfoundry deadline not met 10% High
Cannot optimize design to fit the die area 20% High
Cannot optimize design for 15Hz framerate 30% Medium

Table 1: Project Risks

18

3.6 Personnel Effort Requirements

These are the predictions of our time requirements for the pGPU, which is based on our
initial weeks working on senior design and past ChipForge experience. This is also based on
the work of previous senior design teams with projects in ASIC design.

Task Time Estimate (hours)
Install toolchain and do ChipForge tutorials 35
Define project specifications 15
Define project design 40
Develop hardware to run pGPU 20
Develop software to run uGPU 20
Write and test Verilog modules 100
Connect and test Verilog modules in the top level design 25
Test synthesis options 80
Complete pre-check and layout 40
Submit for tapeout 10
Write user guide 90

Table 2: Personnel Effort Requirements

3.7 Other Resource Requirements

Our extra resource requirements will consist mostly of the equipment that can be found in
the senior design lab and Chipforge lab. This includes oscilloscopes, logic analyzers, FPGAs,
and computers. All of these resources are freely available to use, so will not be a problem to
attain.

19

4 Design

4.1 Design Context
4.1.1 Broader Context

Modern GPUs are large, expensive, and power hungry. We will be providing a small form
factor, energy efficient alternative to these GPUs, called a yGPU for our user groups. Modern
GPUs are attractive to many problems due to their ability to run parallel code in their cores.
We have made our pipeline programmable to allow for users to map their own problems to

the uGPU.

Our design is to support development of ASICs and to teach about graphics pipelines to
ChipForge members. Additionally, we have made the pipeline programmable so it can be
mapped into courses from ISU faculty. Finally, embedded GPU users may find enjoyment
in our design due to its small size and light power consumption.

Our project addresses the need for open source ASICs. ChipForge members enjoy open
source ASICs because they allow members to start off with a functional code base, which
allows members to see what Verilog synthesizes and what may not, and how to solve com-
mon problems. This is introducing the members to the larger open source digital design
community, which will also benefit from our open source GPU design.

Additionally, some special considerations are explored in Table [3|

20

Area

Description

Examples

Public Health, Safety,
and Welfare

Our project provides a small GPU
that does not currently exist to
most of our user groups, namely
ISU Faculty and ChipForge mem-
bers. Through Chipfoundry, we
are lowering the barrier of access
to a small scale GPU.

The creation and distribution of a
product like the pGPU increases
the job market in terms of design
and testing, and marketing.

Global, Cultural, and
Social

Our project helps grow and sup-
port the open source digital de-
sign community, thus creating a
more active digital design com-
munity. This community is an
implied user group through Chip-
forge members and Embedded
GPU enthusiasts.

By adding to the digital design
community, we are growing the
group and introducing ChipForge
members to a larger community.

Environmental

Our project requires silicon
wafers to be manufactured,
which must be mined out from
the Earth and delivered to
the foundry, which has a net
negative environmental impact.
Additionally, the chips must be
shipped across the United States,
increasing the environmental cost
of our product.

Because the puGPU is smaller
than modern GPUs, it will have
less components, thus less waste
in manufacturing and when it
reaches end of life. It being lighter
also reduces the environmental
cost of shipping, thus lowering the
environmental impact.

Economic

The pGPU is an open source de-
sign that any group could copy
and modify to fit their needs.
This makes the cost of develop-
ment of future revisions less.

By creating and fabricating this
open source design, we are sup-
porting the growth of small scale
ASIC development. With this
growth, individuals can create
and market their own products,
thus increasing market competi-
tion, which lowers price.

Table 3: Broader Context

4.1.2 Prior Work,/ Solutions

This project gave us the autonomy of choosing the design we wanted. When thinking of
considerations, we tried to think of what would benefit Chipforge the most. Many Chipforge
members have an interest in GPUs, and with the class CPRE 480: Graphics Processing and
Architecture no longer being offered, a uGPU would provide members a great starting point
for learning about GPU hardware design.

21

Our starting consideration was the GPU that is implemented when taking CPRE 480. The
lab portion of this class involves designing a fixed graphics pipeline with rasterizer. However,
with a larger team and longer timeline, this was evolved to become a multicore programmable
pipeline, with vertex and fragment shading.

Rasterization is the process of turning object vectors into pixel images. Although more
complex rendering methods exist today, rasterization is still commonly used due to being
fast. This means the rasterizer is one of the most important modules in the yGPU, and it
was the first module to be created. Its design was modeled after older NVIDIA rasterization
techniques, which use barycentric coordinates to determine if a point is inside a triangle.

4.1.3 Technical Complexity
Our design contains several components that have non-trivial amounts of complexity:

e Programmable Cores

— We need to implement what is essentially an entire processor that will handle
performing any of the number of operations passed to it. We will also need to
route the data in and out of it in a sensible way.

e Rasterizer

— The rasterizer will handle converting a set of 3D coordinates to an array of 2D
pixels. This consists of a set of math operations that will need to be executed
efficiently for performance reasons. It also handles mapping textures to the poly-
gons.

e VGA Controller

— We decided to write our own VGA controller for better customization and inte-
gration into our overall design. Building the controller out will require properly
timing output signals to display pixels within the standards established for VGA
displays.

4.2 Design Exploration
4.2.1 Design Decisions
There are several important decisions that went into planning out our design:

1. Pipeline Flexibility

e For the design of our graphics pipeline, we had to decide between a fixed pipeline
or a programmable one.

22

2. Design Verification Framework

e The ChipForge design flow we worked with doesn’t formally have any specific
verification standards. As a part of a push for better verification standards both
in our senior design group and in the ChipForge extracurricular, we decided to
implement a specific verification framework to use with all of our Verilog designs.

3. Instruction Set Architecture

e An important part of creating a programmable graphics processor is the set of
instructions that the graphics processing cores will support. This includes any
operations necessary support programmable operations that we are looking to
make available.

4. Programmable Core Count

e Since we decided to make our pipeline programmable, that means that we have
cores that support a range of operations. The next step in that process was
deciding the number of cores.

4.2.2 Ideation

1. Were we to choose to build a fixed pipeline, the complexity of the pipeline would be
dramatically simpler, at the cost of customization. The programmable pipeline would
have more flexibility but would be much more complex to design and would be more
difficult to program for as well.

2. For verification the main options we looked at and their considerations were:

e CocoTB: Already implemented in ChipForge’s Caravel harness, and relatively
easy to use.

e SVUnit: Lightweight and easy to implement in existing toolflow. Flexible with
what simulator we use

e UVM: Industry standard for HDL verification. Lots of overhead for a single test,
but very modular.

3. For designing our ISA, we had to look at what we needed for the various stages we
would like to implement. This included operations needed to meet requirements (such
as vertex shading) and operations for other goals (such as ray tracing and machine
learning).

4. For deciding the number of cores the main thing we looked at was the estimated size
of each core. Since we have a small die area for our uGPU, we decided we would fill
whatever space we had left from the rest of the design with programmable cores.

23

4.2.3 Decision-Making and Trade-Off

1. We decided to proceed with designing a programmable pipeline, as programmable
pipelines are more modern and better fit our users’ needs. Additionally, since we have
seven group members, we figured we would have a large enough labor pool to implement
the programmable pipeline.

2. For the purposes of this project, we decided to integrate SVUnit into our project, as
we liked it’s ease of use, and the simulator flexibility won us over.

3. We have yet to fully pick out our ISA, and are actively working on it.

4. We decided we want around six cores in our project, as we think this will give us a
level of performance that will meet our expectations.

4.3 Proposed Design
4.3.1 Overview

Our design is a programmable GPU primarily designed for 3D rasterization. It features:

e Six (6) custom programmable cores following a custom ISA

— 16kB internal program memory

16 32-bit registers per core

48 32-bit registers shared between all cores

— Multithreading capability

e One (1) pipelined rasterizer module

Three (3) external QSPI memory ports

One (1) external control interface

)
(
e One (1) external VGA port
)
)

One (1) RISC-V management core for initializing and controlling the pGPU

Because the design is primarily optimized for 3D rasterization it includes dedicated rasteriza-
tion hardware. However it is also capable of other GPU compute tasks such as 2D rendering,
ray tracing and machine learning because the custom cores are programmable. The user can
write small programs in assembly that run in parallel on the cores to do virtually anything.

24

SRAM 0

SRAM 1

E Fragment FIFO [€€== Rasterizer Texture Cache| E E
:) |_ Depth Gache i
Transformed Vertex, Metadata -
| - H
: | = .
H = 5 -
H ‘ Outbox ‘ Outbox ‘ Outbox \,:) = Mem Ctrlr 0 et xSPI
H S Transformed k4 HE
. Core Core [Core g < HEH
. = = = < Vertex Cache . — 'l
H Z| Regfile 2| Regfile Z| Regfile 2 Arbiter = Mem Curlr 1 ==
: - & P
H | Mem Ctrlr 2 s
: =) H
: e Q P
5 Inst, Global Regfile Data I l HE
H PCoO % HEH
H Global [PC 1 .] Vo
: . M . X Bridee] o ——
: Core IME Core Controller Regfile [pC 2] | PHd8e . VGA —
: 5 E E
\\ i;\h‘)ull(\ '
Management Core :
SRAM (2kB) anagement Core :

DFFRAM

(1kB)

Flash Interface

50MHz SYSCLK

UART

Debug SPI| DLL

Core D
Other

PKBus
Wishbone

Vertex Shader Out
Rasterizer Out

ebug

Figure 1: uGPU Data Flow

25

SRAM 2

4.3.1.1 Input Processing

3D models come in various formats, but they are all essentially a list of vertices, connectivity,
and texture coordinates. The management core doesn’t have enough power to process these
large files. Instead, the host system that implements the 4 GPU handles preprocessing the
model and converting the format.

The 3D model is stored in GPU memory and organized in the vertex buffer and index buffer.
The formats of the vertex and index buffers are shown in Figure [2] Vertex buffer entries are
flexible since loading a vertex is done by the shader cores and is programmable. Index buffer
entries are fixed since loading is handled in hardware.

typedef fixed_s32_t int32_t; // Custom fixed-point type defined in hardware

// Sample vertex buffer entry without texture coordinates
typedef struct __packed {
fixed_s32_t x;
fixed_s32_t y;
fixed_s32_t z;
} vertex_t;
vertex_t vertex_buffer [N_VERTICES];

// Sample vertex buffer entry with texture coordinates
typedef struct __packed {
fixed_s32_t x;
fixed_s32_t y;
fixed_s32_t z;
fixed_s32_t tx;
fixed_s32_t ty;
} vertex_t;
vertex_t vertex_buffer [N_VERTICES];

// Index buffer entry

typedef struct __packed {
uint32_t idx[3];

} index_t;

index_t index_buffer [N_TRIANGLES];

Figure 2: Vertex and Index Buffer Entries for 3D Models

26

4.3.1.2 Shader Cores

The shader cores are custom-designed pipelined cores that implement a custom ISA. They
can be programmed in assembly to do anything the user wants, enabling functionality like
machine learning, ray tracing, GPGPU compute, and physics simulations. The custom ISA
allows the cores to implement complex functionality and pack the functionality into a single
fast instruction. It currently supports vector operations (dot product, add, subtract, scale),
vector loads, and pushing and pulling from the rasterizer in addition to standard scalar
operations (add, subtract, add immediate, etc).

Each core has 16 word-length registers in a private register file. These hold information
relevant to the data that the core is currently working on: vector coordinates, colors, normal
vectors, etc. All cores also have access to 48 word-length global registers which hold common
data for each model, such as the model-world-projection matrix. The register usage is defined
by the user through the shader program.

The instruction memory (IMEM) and program counter (PC) is shared between all cores,
meaning all cores are executing the same instruction at the same time. The complexity
of individual PCs and instruction fetch logic is too much for the size of the shader cores.
However, users still want to have branches and jumps in their programs. Even in basic
rasterization the cores need to be split between vertex and fragment shading depending on
whether there are vertices remaining in the model or fragments ready from the rasterizer.

Multithreading is handled using predication, where instead of modifying the PC for a jump
or branch the execution of each instruction is dependent on a condition encoded into the
instruction. In other words, each instruction has if (predicate) { instruction } built
into the encoding. This keeps the fetch logic simple while allowing conditions. This gets more
complex when introducing nested conditionals. This is addressed with a max conditional
depth constant.

The following sections cover the common use cases for the shader cores in a rasterization
workload. The cores are programmable and are not limited to only vertex and fragment
shading, but they are most optimized for these tasks.

27

4.3.1.2.1 Vertex Shading

Vertex shading consists of 5 steps as shown in Figure 3] The names may be slightly different
from other resources online, but this is the convention followed for the rest of this report.
These steps are combined into a single matrix multiplication done in hardware using the
shader cores. This is run on every vertex in every model. Vertex shading uses homogeneous
coordinates, which add a fourth entry into each vector. The fourth entry is the perspective
parameter, usually called w.

Model Space

Model Matrix

World Space

View Matrix

Camera Space

Perspective Matrix

Clip Space

Homogeneous — XYZ

Normalized
Device Co-
ordinates

Screen Matrix

Screen Space

[xscreen y Yscreen Zdepth]

Figure 3: Vertex Shading Steps

1. Model matrix: Move, scale, stretch, and rotate the vertex from the model coordinate
space (determined by the model designer, likely with the origin centered on the model)
into the world space containing our scene. Some sample model matrices are shown in

Table [

28

X, Y. Z, 0] |vs
Xy Y, Z, 0f v,
Vworld = Xz sz Zz 0 v,
0O 0 0 1] |1
Matrix Description
~ _ Rotate by 6 around the X axis.
1 0 0 0
0 cosf —sinf O
0 sinf cosf 0
0 0 0 1]
_ Rotate by € around the Y axis.
cosf 0 sinf 0
0 10 0
—sinfd 0 cosf O
|0 0 0 1]
- Rotate by 6 around the 7 axis.
cosf) —sinf 0 0
sinff cosf 0 0
0 0 10
| 0 0 0 1]
Scale in X, Y, Z by S;,5,,5..
S 00 0 A negative scale value will reflect
0 5 00 over the plane normal to it (=95,
0 0 5.0 reflects over the XY plane).
0 0 0 1
Reflect over an arbitrary plane
-2 —2ab —2qc 0] |“TETE=0
—2ab 1 —-2b> —2bc O
—2ac —2bc 1—2c* 0
0 0 0 1
Skew /shear along the Y axis, an-
1 tan6 0 0 gle relative to the X axis. Moving
0O 1 00 tan 6 to different locations in the
0O 0 10 matrix changes the skew direction
0 0 01 and angle reference.

29

Translate by 1, T,,T.

o O O =
o O = O
O~ O O
Hzﬁ@ﬂsﬁ

Table 4: Model Transformation Matrices

2. View matrix: Transform the vertex into camera space. The view matrix is the inverse
of the camera matrix. The camera matrix is essentially X, Y, and Z rotation matrices
multiplied with a translation matrix. This allows the camera to be positioned in all 6
degrees of freedom. Inverting the camera matrix places objects relative to the camera
instead of placing the camera relative to the world coordinates. It transforms the world
coordinates to be centered on the camera with the lens pointing down the -Z axis. [9]

13l

-1

X, Yy Z, ¢
Xy Yy Zy ¢

Uyiew = Xz Y'Z Zz c. Vworld
O 0 0 1

3. Perspective matrix: Apply perspective projection, depth of field, and field of view
and clip off any model features outside of a certain depth range. This creates the
viewing frustum: a region between the near clip plane and far clip plane that defines
what is displayed in the final image (as shown in Figure . Triangles closer to the
camera than the near clip plane zNear, farther than the far clip plane zFar, or outside
the frustum are not rendered. [10] [6]

30

Figure 4: Viewing frustum, showing zNear, zFar, and clipping

The canonical perspective matrix with FOV calculation is shown below. After convert-
ing to normalized device coordinate (NDC) space, the output ranges for points inside
the viewing frustum are X = [-1,1], Y =[-1,1], Z = [0, 1].

x
_ Y
Vworld = Py
1
...where z is negative for all objects in front of the camera (camera points down the
-7 axis).
x/ —z
v = Uclip/w = Uclip/ -z = y/ -z

z/ —z

31

...where dividing by —z applies perspective and corrects for the camera pointing
down the -7 axis.

Applying perspective at zNear:

—(z=—zNear)-zFar—zFar-zNear
/ zFar—zNear -0

(w= —2z = zNear)

Applying perspective at zFar:

—(z=—zFar)-zFar—zFar-zNear

Z/ _ zFar—zNear -1
(w=—z=zFar)

Assembling into a matrix:

S 0 0 0
0 S 0 0
Velip = 0 0 —zFar —2Far-zNear | Vworld
zFar—zNear zFar—zNear
0 0 -1 0
1
where S = ————u7mp—
t ov_radians

2

After converting back to an ZYX 3-vector, this maps zNear to z = 0 and zFar to
z = 1. |6] It should be noted that this transformation is non-linear. The division
by w creates a rational curve that gives less depth resolution when further away from
zNear. This will come up later again later.

Projecting depth like this isn’t helpful for our application, a range of [0 — 1] limits our
depth resolution a lot. Ideally, we want to map zNear — z = 0 and zFar — z =
zFar — zNear (essentially shifting the depth of every vertex to be relative to zNear
instead of relative to the camera). The modified projection matrix is shown below.

We want to modify the Z coordinate to equal what we want using a linear
transformation and a division:

zFar — zNearwhenz = —zFar

, az+b azx+b)Owhenz= —zNear
wo -z

Solving by substitution:

zFar - (zFar — zNear) 7
a = = —zrar
zNear — zFar

32

zFar - zNear - (zFar — zNear) 7 N
= = —zFar - zNear

zNear — zFar

S 0 0 0
los o 0
Vi =0 0 —zFar —zFar-zNear| """
0 0 —1 0
1
where S = tfovm

2

4. Normalized Device Coordinates (NDC): Normalized Device Coordinates are the
result of converting the perspective projection from homogeneous coordinates to an
XYZ 3-vector. Normalizing the coordinate space allows the MVP matrix to scale
to any display resolution or aspect ratio. As mentioned previously, the ranges are
X=[-1,1,Y =[-1,1], Z=]0,1].

x/w

Uclip
Unde = w - y/w
z/w

5. Screen Matrix: Transform the NDC into coordinates on a screen and depth into the
screen. The perspective matrix and NDC moves the origin to the intersection between
the zNear plane and the vector coming out the camera lens. +X points right, +Y
points up, and +Z points into the screen. All monitors have their origin at the top left
with +Y pointing down. We need to shift the origin and reflect across the Y axis.

This transformation can be done before or after dividing by w. In Figure [3]it’s shown
after, but in the final implementation it will happen before. This means all of the
transformations can be combined into a single 4x4 matrix and the division at the end
can be done in a single dedicated hardware module.

width — width Ty width — width

Tscreen = Tnde 9 + 9 w 9 + D)
height height Yelip Width — width
Yscreen = ~Ynde 9 + 9 — w 9 + 9
Zscreen = “ndc

Multiplying by

glg

33

width width

Tscreen = Lelip 9 + 9 w
width — width
Yscreen = —Yclip 9 + 9 w
Those fit perfectly in the form of a linear transformation. We can reformat to a
matrix:
idth idth
’LU’L2 0 0 wl2
0 __height 0 height
VUscreen = 2 2 Uclip
0 0 1 0
0 0 0 1

Finally, turn the homogeneous vertex back into a 3-vector. X and Y will be the
screen coordinates, Z will be the depth into the screen.

VscreenXYZ = Uscreen/w

All of these matrices can be combined via matrix multiplication into a single 4x4 matrix.
This matrix is called the Model-View-Perspective matrix and is provided to the shader cores
by the management core. It is stored in the global registers.

The vertex shading process involves loading a vertex from the vertex buffer and applying the
Model-View-Perspective matrix. After a vertex has been shaded it is pushed to the rasterizer
through a FIFO using a special assembly instruction.

4.3.1.2.2 Fragment Shading

Fragment shading applies lighting and post-processing to all fragments coming out of the
rasterizer. The exact algorithms are flexible since the shader cores are programmable. The
user could implement basic direct illumination or fancier global illumination or ray tracing
algorithms. The user could also implement surface smoothing to reduce sharp edges.

The fragment shader receives the screen coordinates of a pixel, the pixel’s color, and the unit
normal vector of the surface containing the pixel from the rasterizer. For direct illumination,
it performs a dot product to check the angle of the light relative to the normal vector. If the
angle is greater than 90 degrees, the surface is facing towards the light and should be colored
(the normal vector of the surface and of the light are pointing at each other). Otherwise the
surface is in the shade and should be black.

A-B

0 = Cos’l(—’AHB‘

) =cos ' (A- B)if A, B are unit vectors.

34

. Color if A-B <0
Pixel = .
0 otherwise

4.3.1.3 Rasterization

The rasterizer takes in a stream of vertices from the vertex shader in sets of three. These ver-
tices are then translated into a position on the screen. The rasterizer will determine whether
the face is facing toward or away from the camera in a process called back-face culling. It
will do this by determining if the vertices provided are in a clockwise or counterclockwise
order. This is will be easy to implement in hardware and will allow a large portion of faces
sent to the rasterizer to short-circuit.

If this stage passes the upper-left and lower-right coordinates of a bounding box will be
calculated for the set of vertices (Figure . This bounding box will be the area of pixels
that must be iterated to draw the desired triangle.

V3

V1

V2

Figure 5: A bounding box around a triplet of vertices

For each pixel in the bounding box the rasterizer will calculate the barycentric coordinates
of the pixel within the triangle. The barycentric coordinates are the weights for a weighted
average of the three coordinates of the triangle and can represent any point in the triangle.
The choice to use this coordinate system works in our favor at multiple points down the
pipeline and is somewhat simplistic to calculate the equations below. These coordinates
are easy to use to make a decision on whether the pixel is within the triangle or not; the
rasterizer can simply check to make sure all coordinates are greater than zero. If the point
is not in the triangle, the rasterizer will continue by evaluating the next pixel. If the pixel is
in the triangle, the rasterizer will pass this pixel down through the pipeline and continue to
the next pixel.

35

_ (i —ye)(@ = @) + (22 — 21)(y — 42)
Ao = (yl - y2)($0 - IBQ) + (332 — :Ul)(yo — yQ) (1)
_ (2 — o) (x = @) + (w0 — 22)(y —)
M= (yl)(xo — SCQ) + (1’2 — xl)(yo — Z/Q) (2>
A=1—=X— N\ (3)

Figure 6: Calculation of the barycentric coordinates for a triangle defined by (2o, yo), (z1,41),
(x2,y2) and a point (z,y).

The next stage of the pipeline is the depth test stage. This stage is where the rasterizer will
determine whether the new pixel is in front or behind an already drawn pixel. To do this,
the depth of the currently drawn pixel needs to be evaluated. This is done by multiplying
each of the barycentric coordinates (Ao, A1, A2) into the depth of the 3 vertices (29, 21, 22)
and adding the results (Figure (7). The calculated depth is then compared with a value in a
special portion of memory called the depth buffer. If the evaluated value is less than that
present in the depth buffer, then the current pixel passes the depth test. This means that
the new value will be written back to the depth buffer for future rasterization passes, and
the coordinate will be passed to the texture unit for texturing.

Depth = Zz 0()\1 . Zz)
Figure 7: Calculation of the depth of a pixel within the rasterized triangle.

The final stage of the rasterization pipeline is the texture unit. This unit evaluates the
texture address of each pixel and retrieves it from a texture buffer. The calculation of the
texture pixel address is similar to the calculation of the pixel depth (Figure . This address
can be used to index into the current texture and resolve the base color of the current pixel.
This pixel and corresponding information is then sent out through a FIFO to be processes
by the fragment shader.

by = Z?:O(/\i X
ty = Z?:()O‘i - ;)

Texture Address = ¢, - Texture Width + ¢,

Figure 8: Calculation of the texture address for a pixel within a triangle. (ug_2,v9-2) are
the texture coordinates defined at the 3 corners of the current triangle.

36

4.3.1.4 Buses, Memory, and Controls

The shader cores, rasterizer, VGA output, and GPU memory are memory-mapped to the
management core for control and debug through the Wishbone bus. Wishbone is an open-
source memory bus commonly used on FPGA projects. However, it only supports one master.
The shader cores, VGA output, and GPU memory are all bus masters. Therefore we created
a custom multi-master multi-slave arbitrated bus called PKBus. It is used exclusively in the
user area of the design and is connected to the Wishbone bus through a bridge. Configuration
registers for each peripheral are mapped to the Wishbone bus directly, but data access for
GPU memory (for example) is done over PKBus.

The pGPU has external QSPI memory chips capable of running up to 133MHz. Graphics
assets are very large, the framebuffer alone at our max resolution of 320x240 is 76.8kB.
Putting memory onboard the finished die would waste valuable area and restrict our design’s
capabilities. External memory allows us to store more complex assets and models.

4.3.1.5 VGA Output

Generating a VGA signal involves outputting the HSYNC and VSYNC signals at the correct
timings and outputting color over 3 analog lines (red, green, and blue). The uGPU outputs
320x240 @ 60Hz using the standard timings and 8-bit color depth. 320x240 is a quarter
of 640x480. The VGA output still sends out standard 640x480 timings, but performs line
doubling and pixel doubling to lower the resolution. This doesn’t affect overall performance
since each line is read with a single burst read and cached within the VGA output module.
A new line of pixels is only read every other line. The VGA module also supports lower

resolutions: 160x120 (16th-scale) and 80x60 (64th scale).

The conversion from digital 8-bit color to analog VGA color is done using a custom resistor
DAC on the die (Figure . This saves 5 10O pins (3 for analog RGB instead of 8 for all 8
bits), which are extremely valuable on this chip. The alternative is an external resistor DAC
similar to the one used for testing.

4.3.1.6 Hardware

The GPU needs some some supporting hardware in addition to the chip design: the afore-
mentioned external memory, a VGA connector, and headers for connecting to a host system.
There are two board designs that accompany the silicon:

¢ MemoryVGAPmod: A quad PMOD board used for FPGA testing. Contains 3
QSPI memory chips, a VGA DAC, and a VGA connector.

e 1GPU: The carrier board for the final taped out design. Contains an M.2 slot for the
Caravel board we receive from ChipFoundry, 3 QSPI memory chips, a VGA connector,

37

Horizontal Timings

Vertical Timings

CLK

25.175MHz

Prescaler
PRESC]|3:0]

Pixel Counter

RES[3:0] > Pixel

Clock

Line Cache

Line Counter

Pixel Output

HSYNC

VSYNC

1

Figure 9: VGA output module block diagram

GPU

(MSB) R9 ST oy AN

975

Bl AAA__ 007V |
837 v

(LSB) BO AAN——

Display
75

Figure 10: VGA color resistor ladder

PIXEL[7:0]

a VGA DAC in case the onboard one doesn’t work, headers for connecting to a host,

and debug headers.

38

.1090JQ 138y A

ac
(=)
=
= L
‘g
' @
@
=%
o
=
o
=
<
e
=
=%
<
o
=
o
Q
(=}

Hunnn
‘|l

Figure 11: 3D render of MemoryVGAPmod

4.3.2 Functionality

In a typical user environment, we would expect that users are using our product as a de-
velopment or teaching platform. A user would typically use documentation provided by us
as a reference to build their own application or obtain software that is already built. The
user would be able to build on the software already provided by our team because of the
open-source nature of the project.

We provide the user a datasheet that describes the functionality of the chip and register
descriptions. Additionally, we provide an ISA summary for the shader cores that details
each instruction’s functionality and encoding. The build system used for the development
process is open-source so bring-up should be relatively straightforward.

4.3.3 Areas of Concern and Development

Our biggest concern with regards to technology is the area constraints placed on us by the
multi-project wafer service, chipfoundry.io. We have 10 mm? of space on the die, which is
significantly less area than any commercial graphics co-processors that we have investigated.
Additionally, we have found that our process generally has a larger feature size and fewer
layers than other graphics accelerators.

39

To attempt to combat against issues with die use we will design our system in a modular
way. This will allow us to scale the processing power of the graphics core with the size of
the die. This would, of course, harm performance but we are willing to make sacrifices in
performance to provide a more complete and adaptable product to the user.

4.4 Technology Considerations

The primary technologies we will be using in our design are the SKY 130 PDK, SVUnit,
EFabless Caravel, and OpenROAD. These are all open-source developments which we will
use to design and fabricate our GPU. The main concern we have with these technologies is a
lack of documentation and a possible lack of quality when compared with some closed-source
counterparts.

We will be addressing this by attempting to use some closed-source software for our fabri-
cation such as Cadence. This will allow us to get the most out of our PDK.

4.5 Design Analysis

Currently we have been making progress designing the rasterizer, memory interface, VGA
controller, and Wishbone configuration system. We hope to integrate our components to-
gether soon to prepare for the upcoming November 2025 tapeout.

We believe that we will only have to make minimal modifications to our original design plan.
We have been able to design a large part of the product so far and have not had any issues
come up that would warrant a full design revision.

40

5 Testing

5.1 Unit Testing

As previously mentioned, our core module testing framework is SVUnit. Each Verilog module
we create must have an SVUnit test to verify its operation and functional flow.

Additionally, all modules must pass OpenLane synthesis and hardening in the Sky130A PDK
before they are merged into the codebase. RTL simulations can hide issues in the design
like improper clock handling and non-procedural assignment issues. Hardening runs timing
checks that ensure these issues are fixed early. Hardening also outputs the die area usage of
the module. This allows us to make area-based design decisions and verify that a particular
design doesn’t exceed its area budget.

After passing RTL and synthesis modules must be run through gate-level (GL) simulations.
GL simulations verify the synthesis results match the intended functionality. GL test support
is provided with the Caravel user project.

5.2 Interface Testing

Interface and subsystem testing is performed with SVUnit and the Caravel test toolchain.
SV Unit is used for subsystems that work independently of the management core and Wish-
bone bus. However, when modules need to be accessed from the management core (i.e.
memory-mapped registers) it’s more useful to test with the RTL test toolchain provided
with the Caravel user project. This simulates the entire system: module under test, man-
agement core, firmware, and memory buses. Remaking a test framework with all of these
moving parts in SVUnit would be complex and prone to issues. The Caravel test framework
is well-tested and well-supported and provides high level test functionality already.

5.3 Integration and System Testing

Integration testing happens in RTL simulation using the Caravel framework and on FPGAs.
As mentioned previously, the Caravel framework provides a feature-rich high-level test system
that works perfectly for integration testing. The framework enables us to run code on the
management core to test memory-mapped registers, run shader programs on the shader cores
to test functionality, and output to a virtual display to see full system output.

However, RTL testing doesn’t always reflect the real world. There are certain components
on the design that interface with external hardware (QSPI memory controller, VGA) and
should be verified against the real world. ChipForge’s Digilent Arty A7 FPGAs and FPGA
tooling are used for this, in addition to the hardware mentioned in Section and a
Saleae Logic 8 Pro logic analyzer. In FPGA testing, we look for correct timing and framing
on the memory buses and graphical artifacts or anomalies on the display. Figure [12| shows

41

an example of these artifacts: the intended image has clean stripes, but the monitor shows
flecks of black all over the screen.

Figure 12: Monitor artifacts during FPGA testing

5.4 Regression Testing

Every SVUnit test exists in a common directory, and from this directory we can enter
cf_run_svunit * in the terminal to run every unit test in the directory. Once this runs,
SVUnit gives an XML of if all of the tests passed, and prints data to the console. If we see
all tests have passed, we have not broken any modules.

5.5 Acceptance Testing

There are a number of 3D models commonly used for GPU or render engine testing. We use
these models as functionality and performance benchmarks for the full design. Performance
is evaluated in frames per second (FPS) rendered by the uGPU. Table [5| shows the test
models, model source, complexity, and minimum FPS.

It should be noted that the performance of a render engine on a particular model heavily
depends on the placement and orientation of the model(s) and camera. For example, if the

42

model is placed outside of clip space every triangle will be thrown away after the vertex
shading stage. Alternatively, imagine a scene with 10 instances of the same model placed in
a line with the camera pointing down the line. If the renderer renders the models farthest to
closest each model will have to pass all the way through the rendering pipeline. Conversely,
if the renderer starts at the front and works backward it will only render the first model
and every other model will be thrown away after the depth buffer check. In short, the
performance of a test is highly dependent on the exact conditions of the scene. Therefore,
all models will be tested with the following position:

e Model placed at the origin, scaled appropriately to be visible on the finished image
and rotated to face the +Z/-X quadrant.

e Camera placed at X = 0, translated up (towards +Y) and out (towards +Z) appropri-
ately so the model is visible on the finished image.

e One model per test.

Model Model Name Author Num. Reqd.
Triangles | FPS
Cube Michael Drobot | 12 24
Suzanne [EI] Blender Founda- | 500 24
tion
Cow 4] [7] Viewpoint 5804 24

— Animation En-

)
(@%‘J’\..‘_ - ,\%\ gineering, Sun

Microsystems

43

Utah Teapot [8] | Martin Newell, | 6320 24
Univ. of Utah

Cheburashka [1] | Ilya Baran, | 13334 24
12] Jovan Popovic,

MIT
Stanford Bunny | Greg Turk, Marc | 69451 10
17 Levoy, Stanford

Univ.
Stanford Dragon | Stanford Univ. 871414 2
7]

Table 5: Test models and required performance, by complexity

5.6 User Testing

It is important that the uGPU fits the needs of our users, and to ensure that these user
needs are met we have kept in contact with most of our user bases throughout development.
Notably, most members of the team are members of ChipForge, and a bulk of our work
is done during ChipForge work sessions, so general members of the club are aware of the
development of the uGPU and the features it serves.

44

An additional group that we are serving is the embedded GPU community. To get in touch
with this group, we have done research to find common goals of products they use, such as
a low power and relatively quick refresh rate. This is why we have chosen 24FPS as our
standard for reasonable objects.

5.7 Results

Full system test results for each model are shown in Table [6]

Rendered Image Model Name Num. FPS
Triangles
Cube 12
Suzanne 500
Cow 5804
Utah Teapot 6320
Cheburashka 13334
Stanford Bunny | 69451
Stanford Dragon | 871414

Table 6: Test model performance results

5.8 Post-Tapeout Validation

Once fabricated, each chip must be validated to test its correctness and performance. The
first step would be to render the same set of 3D models on the chip and record the FPS.
Although this is not an exhaustive test, successfully rendering all of the models at the target
frame-rate implies no major errors. Any of the models that fail to be rendered properly
require further tests.

Additional tests should target a specific functional unit. This includes running small assem-
bly programs, specifically using a ALU, load, store, etc. and comparing the actual results
to the expected results. Defects are possible during fabrication, and any of the components
can be affected. If one of the cores do not work (due to a fabrication defect), a core enable
bit can be cleared to prevent that core from computing. However, if the defect occurs on
any other unit, that chip will most likely be unusable.

45

6 Implementation

46

7 FEthics and Professional Responsibility

7.1 Areas of Professional Responsibility /Code of Ethics
7.2 Four Principles

7.3 Virtues

47

8.1

8.2
[1]

2]

3]

4]

[5]

[6]

7]

8]

19]

[10]

8.3

Closing Material

Conclusion

References

[lya Baran and Jovan Popovic. “Automatic rigging and animation of 3D characters”.
In: ACM Trans. Graph. 26.3 (2007), p. 72. DOI: 10.1145/1276377 . 1276467. URL:
https://doi.org/10.1145/1276377.1276467.

Common 3D Test Models. URL: https://github.com/alecjacobson/common-3d-
test-models. (accessed: November 19, 2025).

Computing the Pixel Coordinates of a 3D Point. URL: https://www.scratchapixel.
com/lessons/3d - basic - rendering/ computing - pixel - coordinates - of - 3d -
point/mathematics-computing-2d-coordinates-of-3d-points.html. (accessed:
November 19, 2025).

Douglas DeCarlo et al. “Suggestive contours for conveying shape”. In: ACM Trans.
Graph. 22.3 (2003), pp. 848-855. DOI: 10.1145/882262.882354. URL: https://doi.
org/10.1145/882262.882354.

Suzanne Model. URL: https://projects.blender . org/blender/blender/src/

branch/main/tests/files/io_tests/obj/suzanne_all_data.obj. (accessed:
November 19, 2025).

The Perspective and Orthographic Projection Matrix. URL: https://www.scratchapixel.
com/lessons/3d-basic-rendering/perspective-and-orthographic-projection-
matrix/building-basic-perspective-projection-matrix.html. (accessed: Novem-
ber 19, 2025).

The Stanford 3D Scanning Repository. URL: https://graphics.stanford.edu/data/
3Dscanrep/. (accessed: November 19, 2025).

Utah Teapot OBJ Model. URL: https://graphics.stanford.edu/courses/cs148-
10-summer/as3/code/as3/teapot.obj. (accessed: November 19, 2025).

WebGL 3D Camera. URL: https : / / webglfundamentals . org / webgl / lessons /
webgl-3d-camera.html. (accessed: November 19, 2025).

WebGL 3D Perspective. URL: https://webglfundamentals. org/webgl/lessons/
webgl-3d-perspective.html. (accessed: November 19, 2025).

Appendices

8.3.1 Further Reading

Below are some helpful resources and further reading material that weren’t directly cited
above. They may be helpful for getting started with a new design or debugging an existing

48

https://doi.org/10.1145/1276377.1276467
https://doi.org/10.1145/1276377.1276467
https://github.com/alecjacobson/common-3d-test-models
https://github.com/alecjacobson/common-3d-test-models
https://www.scratchapixel.com/lessons/3d-basic-rendering/computing-pixel-coordinates-of-3d-point/mathematics-computing-2d-coordinates-of-3d-points.html
https://www.scratchapixel.com/lessons/3d-basic-rendering/computing-pixel-coordinates-of-3d-point/mathematics-computing-2d-coordinates-of-3d-points.html
https://www.scratchapixel.com/lessons/3d-basic-rendering/computing-pixel-coordinates-of-3d-point/mathematics-computing-2d-coordinates-of-3d-points.html
https://doi.org/10.1145/882262.882354
https://doi.org/10.1145/882262.882354
https://doi.org/10.1145/882262.882354
https://projects.blender.org/blender/blender/src/branch/main/tests/files/io_tests/obj/suzanne_all_data.obj
https://projects.blender.org/blender/blender/src/branch/main/tests/files/io_tests/obj/suzanne_all_data.obj
https://www.scratchapixel.com/lessons/3d-basic-rendering/perspective-and-orthographic-projection-matrix/building-basic-perspective-projection-matrix.html
https://www.scratchapixel.com/lessons/3d-basic-rendering/perspective-and-orthographic-projection-matrix/building-basic-perspective-projection-matrix.html
https://www.scratchapixel.com/lessons/3d-basic-rendering/perspective-and-orthographic-projection-matrix/building-basic-perspective-projection-matrix.html
https://graphics.stanford.edu/data/3Dscanrep/
https://graphics.stanford.edu/data/3Dscanrep/
https://graphics.stanford.edu/courses/cs148-10-summer/as3/code/as3/teapot.obj
https://graphics.stanford.edu/courses/cs148-10-summer/as3/code/as3/teapot.obj
https://webglfundamentals.org/webgl/lessons/webgl-3d-camera.html
https://webglfundamentals.org/webgl/lessons/webgl-3d-camera.html
https://webglfundamentals.org/webgl/lessons/webgl-3d-perspective.html
https://webglfundamentals.org/webgl/lessons/webgl-3d-perspective.html

one.

1. Graphics: Rasterization, Shading, Lighting, Math

e A Trip Through the Graphics Pipeline, Fabian Giesen

e All the Pipelines - Journey Through the GPU, Lou Kramer, AMD
e An Overview of the Rasterization Algorithm, Scratchapixel

e Ray Tracing in One Weekend, Shirley, Black, Hollasch

List of Common 3D Test Models, Wikipedia

e What Is Direct and Indirect Lighting?, JJ Kim, NVIDIA Blog

e Phong Shading, Wikipedia

2. Shader Cores
e Irom Shader Code to a Teraflop: How Shader Cores Work, Kayvon Fatahalian,
SIGGRAPH 2009
e ARM Immortalis and Mali Shader Core Design

3. Caravel and Toolchain

e ekabless Caravel Harness Documentation
Skywater Sky130 PDK Documentation
OpenLANE Configuration Guide

eFabless Design Catalog (Internet Archive)
OpenLANE DFFRAM Macros

OpenRAM SRAM Macro Compiler

49

https://fgiesen.wordpress.com/2011/07/09/a-trip-through-the-graphics-pipeline-2011-index/
https://gpuopen.com/download/AMD_Graphics_pipeline_GIC2020.pdf
https://www.scratchapixel.com/lessons/3d-basic-rendering/rasterization-practical-implementation/overview-rasterization-algorithm.html
https://raytracing.github.io/
https://en.wikipedia.org/wiki/List_of_common_3D_test_models
https://blogs.nvidia.com/blog/direct-indirect-lighting/
https://en.wikipedia.org/wiki/Phong_shading
https://engineering.purdue.edu/~smidkiff/KKU/files/GPUIntro.pdf
https://developer.arm.com/documentation/107776/0109/Shader-core-functional-units
https://caravel-harness.readthedocs.io/en/latest/index.html
https://skywater-pdk.readthedocs.io/en/main/index.html
https://armleo-openlane.readthedocs.io/en/latest/docs/source/configuration.html
https://web.archive.org/web/20250218100208/https://platform.efabless.com/design_catalog
https://github.com/efabless/OL-DFFRAM
https://github.com/VLSIDA/OpenRAM

9 Team

9.1 Team Members

9.2 Required Skill Sets for your Project

9.3 Skill Sets Covered by the Team

9.4 Project Management Style Adopted by the Team
9.5 Initial Project Management Roles

9.6 Team Contract

50

	Introduction
	Problem Statement
	Intended Users
	Embedded GPU Users
	Chipforge Members
	ISU Faculty

	Requirements, Constraints, and Standards
	Requirements & Constraints
	Engineering Standards
	 IEEE 1364.1-2002: IEEE Standard for Verilog Register Transfer Level Synthesis
	 IEEE 1364-2001: IEEE Standard Verilog Hardware Description Language
	 IEEE 1149.7-2009: IEEE Standard for Reduced-Pin and Enhanced-Functionality Test Access Port and Boundary-Scan Architecture

	Project Plan
	Project Management/Tracking Procedures
	Task Decomposition
	Project Proposed Milestones, Metrics, and Evaluation Criteria
	Project Timeline/Schedule
	Risks and Risk Management/Mitigation
	Personnel Effort Requirements
	Other Resource Requirements

	Design
	Design Context
	Broader Context
	Prior Work/ Solutions
	Technical Complexity

	Design Exploration
	Design Decisions
	Ideation
	Decision-Making and Trade-Off

	Proposed Design
	Overview

	Input Processing
	Shader Cores
	Vertex Shading
	Fragment Shading
	Rasterization
	Buses, Memory, and Controls
	VGA Output
	Hardware
	Functionality
	Areas of Concern and Development
	Technology Considerations
	Design Analysis

	Testing
	Unit Testing
	Interface Testing
	Integration and System Testing
	Regression Testing
	Acceptance Testing
	User Testing
	Results
	Post-Tapeout Validation

	Implementation
	Ethics and Professional Responsibility
	Areas of Professional Responsibility/Code of Ethics
	Four Principles
	Virtues

	Closing Material
	Conclusion
	References
	Appendices
	Further Reading

	Team
	Team Members
	Required Skill Sets for your Project
	Skill Sets Covered by the Team
	Project Management Style Adopted by the Team
	Initial Project Management Roles
	Team Contract

